

In this section, we will evaluate the output signal-to-noise ratios for analog systems (AM, DSB-SC, SSB, PM, FM)

Output SNR for analog system

For systems with additive noise channels the input to the receiver is

$$r(t) = s(t) + n(t)$$

For bandpass communication systems having a transmission bandwidth of B_T,

$$r(t) = \operatorname{Re}\left\{g_{s}(t)e^{j(\omega_{c}t+\theta_{c})}\right\} + \operatorname{Re}\left\{g_{n}(t)e^{j(\omega_{c}t+\theta_{c})}\right\}$$
$$= \operatorname{Re}\left\{\left[g_{s}(t) + g_{n}(t)\right]e^{j(\omega_{c}t+\theta_{c})}\right\}$$

or

$$r(t) = \operatorname{Re}\left\{g_T(t)e^{j(\omega_c t + \theta_c)}\right\}$$

To compare the SNRs for various types of bandpass systems (AM, DSB-SC, SSB, PM, FM),

assume:

• The power of the modulated signals at the inputs of these receivers is set to the same value P_s , the bandwidth of the baseband modulating signal is **B**.

• The PSD of the input noise is $N_0/2$

● 长子科技大学 bester former former at the sequence 通信与信息工程学院

Output SNR for analog system

Comparison with baseband systems

Common measurement criterion

The received signal power P_s divided by the amount of power in the white noise that is contained in a bandwidth equal to the message bandwidth.

$$\left(\frac{S}{N}\right)_{baseband} = \frac{P_s}{N_0 B}$$

● 北子科技大学 burning formation and burning a first 通信与信息工程学院

AM systems with product detection

The output of the product detector is:

AM system

$$\widetilde{m}(t) = R_e \left\{ g_T(t) \right\} = A_c + A_c m(t) + x_n(t)$$

The output SNR is:

$$\left(\frac{S}{N}\right)_{out} = \frac{A_c^2 \overline{m^2(t)}}{\overline{x_n^2(t)}} = \frac{A_c^2 \overline{m^2(t)}}{2N_0 B}$$

$$\frac{(S/N)_{out}}{(S/N)_{in}} = \frac{2\overline{m^2}}{1+\overline{m^2}}$$

$$\frac{(S / N)_{out}}{(S / N)_{baseband}} = \frac{\overline{m^2}}{1 + \overline{m^2}}$$

AM system

AM systems with envelope detection

The output of the envelope detector is:

$$\widetilde{m}(t) = KR_T(t) = K \left[\left[A_c + A_c m(t) + x_n(t) \right] + j \left[y_n(t) \right] \right]$$

For the case of large (S/N)_{in}:

The detector output power is:

$$\overline{[KR_T(t)]^2} = (KA_c)^2 + K^2 A_c^2 \overline{m^2} + K^2 \overline{x_n^2}$$

The output SNR is:

$$\left(\frac{S}{N}\right)_{out} = \frac{A_c^2 \overline{m^2}}{\overline{x_n^2}} = \frac{A_c^2 \overline{m^2}}{2N_0 B}$$

For large $(S/N)_{in}$, the performance of the envelope detector is identical to that of the product detector

AM system

For small (S/N)_{in}:

The detector output is:

$$KR_{T}(t) = K |g_{T}(t)| = K |A_{c}[1+m(t)] + R_{n}(t)e^{j\theta_{n}(t)}|$$

DSB-SC system

$$r(t) = s(t) + n(t) = \operatorname{Re}\{g_T(t) e^{j(\omega_c t + \theta_c)}\}$$
Product detector
Modulated signal
plus noise in
$$\operatorname{IF filter}_{Band-} \left(\begin{array}{c} 2B, \text{ for AM and} \\ DSB-SC \\ B, \text{ for SSB} \end{array}\right)$$

$$\operatorname{Ic}_{2 \cos(\omega_c t + \theta_c)}$$
Evolution is a constrained of the second se

DSB-SC signal :

 $g_s(t) = A_c m(t)$

(1)

signal + noise :

$$g_n(t) = x_n(t) + Jy_n(t)$$

$$g_T(t) = \left[A_c m(t) + x_n(t)\right] + jy_n(t)$$

(1) (1)

The output of the product detector is:

$$\widetilde{m}(t) = R_e \left\{ g_T(t) \right\} = A_c m(t) + x_n(t)$$

The SNR for DSB-SC is:

$$\left(\frac{S}{N}\right)_{out} = \frac{A_c^2 \overline{m^2(t)}}{2N_0 B}$$

$$\frac{(S/N)_{out}}{(S/N)_{in}} = 2$$

$$\frac{(S / N)_{out}}{(S / N)_{baseband}} = 1$$

The noise performance of a DSB-SC system is the same as that of basedband signaling system, although the bandwidth requirement is twice as large (i.e., $B_T=2B$) 11 Your site here

The receiver for an SSB signal:

SSB system

The output of the product detector is:

$$\widetilde{m}(t) = R_e \left\{ g_T(t) \right\} = A_c m(t) + x_n(t)$$

The output SNR is:

$$\left(\frac{S}{N}\right)_{out} = \frac{A_c^2 \overline{m^2(t)}}{\overline{x_n^2(t)}} = \frac{A_c^2 \overline{m^2(t)}}{N_0 B}$$

$$\frac{(S / N)_{out}}{(S / N)_{in}} = 1$$

$$\frac{(S / N)_{out}}{(S / N)_{baseband}} = 1$$

• SSB is exactly equivalent to baseband signaling, in terms of both the noise performance and the bandwidth requirement (i.e., $B_T = B$)

• DSB, SSB and baseband signaling systems are all equivalent in output SNR.

The receiver for an PM signal:

The complex envelope at the detector input is:

$$g_{T}(t) = |g_{T}(t)|e^{j\theta_{T}(t)} = [g_{s}(t) + g_{n}(t)]$$
$$= A_{c}e^{j\theta_{s}(t)} + R_{n}(t)e^{j\theta_{n}(t)}$$

The phase detector output is proportional to $\theta_{T}(t)$

$$r_0(t) = K \angle g_T(t) = K \theta_T(t)$$

Figure 7–22 Vector diagram for angle modulation, $(S/N)_{in} \ge 1$.

For $A_c >> R_n(t)$, the composite phase angle is approximated by

$$r_0(t) = K\theta_T(t) \approx K \left\{ \theta_s(t) + \frac{R_n(t)}{A_c} \sin[\theta_n(t) - \theta_s(t)] \right\}$$

For large $(S/N)_{in}$, the relevant part of the PM detector output is approximated by

$$r_0(t) \approx s_0(t) + n_0(t)$$

where

$$s_0(t) = K\theta_s(t) = KD_p m(t)$$

$$n_0(t) = \frac{K}{A_c} y_n(t)$$

The PSD of the output noise $n_0(t)$ is:

16

$$p_{n_0}(f) = \begin{cases} \frac{K^2}{A_c^2} N_0 , & |f| \le B_T / 2\\ 0, & f \text{ otherwise} \end{cases}$$

金子科技大学 Martin Alexander Marting at Base 通信与信息工程学院

$$\overline{\widetilde{n}_0^2(t)} = \int_{-B}^{B} p_{n_0}(f) df$$
$$= \frac{2K^2 N_0 B}{A_c^2}$$

通信与信息工程学院

The output SNR is:

$$\left(\frac{S}{N}\right)_{out} = \frac{\overline{s_0^2}}{\overline{n_0^2}} = \frac{A_c^2 D_p^2 \overline{m^2}}{2N_0 B}$$

Because $D_p = \beta_p / V_p$

Thus, the output SNR becomes:

$$\left(\frac{S}{N}\right)_{out} = \frac{A_c^2 \beta_p^2 (\overline{m/V_p})^2}{2N_0 B}$$

Your site here

18

The ratio of output to input SNR:

$$\frac{(S/N)_{out}}{(S/N)_{in}} = 2\beta_p^2(\beta_p + 1)\overline{\left(\frac{m}{V_p}\right)^2}$$

The ratio of output to baseband SNR:

$$\frac{(S / N)_{out}}{(S / N)_{baseband}} = \beta_p^2 \left(\frac{m}{V_p}\right)^2$$

The improvement of a PM system over a baseband signaling system depends on $\beta_p = \Delta \theta$ 20 Your site here

FM system

The receiver for an FM signal:

The complex envelope at the detector input is:

$$g_{T}(t) = |g_{T}(t)|e^{j\theta_{T}(t)} = [g_{s}(t) + g_{n}(t)]$$
$$= A_{c}e^{j\theta_{s}(t)} + R_{n}(t)e^{j\theta_{n}(t)}$$

21

● セ子科技大学 besetigt bereast benenger fire 通信与信息工程学院

FM system

The FM detector output is proportional to the derivative of $\theta_{T}(t)$

 $r_0(t) \approx s_0(t) + n_0(t)$

where

FM system

$$s_0(t) = \left(\frac{K}{2\pi}\right) \frac{d\theta_s(t)}{dt} = \left(\frac{KD_f}{2\pi}\right) m(t)$$

$$n_0(t) = \left(\frac{K}{2\pi A_c}\right) \frac{dy_n(t)}{dt}$$

For FM, the PSD of the output noise $n_0(t)$ is:

$$p_{n_0}(f) = \begin{cases} \frac{K^2}{A_c^2} N_0 f^2 , & |f| < B_T / 2\\ 0 , & f \text{ otherwise} \end{cases}$$

长子科技大学
 新信与信息工程学院
 新信与信息工程学院

Your site here

23

FM system

 $\overline{\widetilde{n}_0^2(t)} = \int_{-B}^{B} p_{n_0}(f) df$

 $=\frac{2}{3}\left(\frac{K}{A_c}\right)^2 N_0 B^3$

Using Eqs. (5-46) and (5-47), we can write the sensitivity constant of the PM transmitter

Your site here

24

The output SNR is:

$$\left(\frac{S}{N}\right)_{out} = \frac{\overline{s_0^2}}{\overline{n_0^2}} = \frac{3A_c^2 [D_f / (2\pi B)]^2 \overline{m^2}}{2N_0 B}$$

Because

$$\frac{D_f}{2\pi B} = \frac{\beta_f}{V_p}$$

Thus, the output SNR becomes:

$$\left(\frac{S}{N}\right)_{out} = \frac{3A_c^2\beta_f^2 \overline{(m/V_p)^2}}{2N_0 B}$$

The input SNR is:

$$\left(\frac{S}{N}\right)_{in} = \frac{A_c^2 / 2}{(N_0 / 2)(2B_T)} = \frac{A_c^2}{2N_0 B_T}$$

The transmission bandwidth B_T of the FM signal is given by Carson's rule:

$$B_T = 2(\beta_f + 1)B$$

Thus:

$$\left(\frac{S}{N}\right)_{in} = \frac{A_c^2}{4N_0(\beta_f + 1)B}$$

26

金子科技大学
 かったいないないないないない
 通信与信息工程学院

The ratio of output to input SNR:

$$\frac{(S/N)_{out}}{(S/N)_{in}} = 6\beta_f^2(\beta_f + 1)\left(\frac{m}{V_p}\right)^2$$

The ratio of output to baseband SNR:

$$\frac{(S / N)_{out}}{(S / N)_{baseband}} = 3\beta_f^2 \overline{\left(\frac{m}{V_p}\right)^2}$$

For the case of sinusoidal modulation, $(m/V_p)^2 = 1/2$,

$$\frac{(S/N)_{out}}{(S/N)_{baseband}} = \frac{3}{2}\beta_f^2$$

金子科技大学
 かかります。
 あのかり、
 あのかり

FM system

Your site here

28

7.9 comparison of analog signaling systems

Your site here

29

Comparison

Туре	Linearity	Transmission Bandwidth Required ^b	$\frac{(S/N)_{\text{out}}}{(S/N)_{\text{baseband}}}$		Comments
Baseband	L	В	1	(7–84)	No modulation
AM	L°	28	$\frac{m^2}{1+\overline{m^2}}$	(7–90)	Valid for all $(S/N)_{in}$ with coherent detection; valid above the threshold for envelope detection and $ m(t) \le 1$
DSB-SC	L	2 <i>B</i>	1 . 8 8 8 8	(7-98)	Coherent detection required
SSB	L	B	https://doi.org/ 100%/mc/ 100%	(7–105)	Coherent detection required; performance identical to baseband system
РМ	NL	$2(\beta_p + 1)B$	$\beta_p^2 \left(\frac{m}{V_p}\right)^2$	(7–120)	Coherent detection required; valid for $(S/N)_{in}$ above the threshold
FM	NL	$2(\beta_f+1)B$	$3\beta_f^2 \left(\frac{m}{V_p}\right)^2$	(7–130)	Valid for $(S/N)_{in}$ above the threshold
FM with deemphasis	NL	$2(\beta_f+1)B$	$eta_f^2 igg(rac{B}{f_1} igg)^2 \ \overline{igg(rac{m}{V_p} igg)^2}$	(7–140)	Valid for $(S/N)_{in}$ above the threshold
PCM	NL	d	$M^2/(S/N)_{\text{baseband}}$	(7–82)	Valid for $(S/N)_{in}$ above the threshold (i.e., $P_e \rightarrow 0$)

30

• For the case of large (S/N)_{in}:

•The nonlinear modulation systems provide significant improvement in the noise performance.

•But the improvement is obtained at the expense of having to use a wider transmission bandwidth.

For small (S/N)_{in}:

• The linear systems outperform the nonlinear systems.

•SSB is the best in terms of small bandwidth, and it has one of the best noise characteristics at low input SNR.

Comparison

通信与信息工程学院